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Abstract Change-Point Methods (CPMs) are statistical tests
design to assess whether a given sequence comes from an
unique, stationary, data-generating process. CPMs eventu-
ally estimate the change-point location, i.e., the point where
the data-generating process shifted. While there exists a large
literature concerning CPMs meant for sequences of inde-
pendent and identically distributed (i.i.d.) random variables,
their use on time-dependent signals has not been properly in-
vestigated. In this case, a straightforward solution consists in
computing at first the residuals between the observed signal
and the output of a suitable approximation model, and then
applying the CPM on the residual sequence. Unfortunately,
in practical applications, such residuals are seldom i.i.d., and
this may prevent the CPMs to operate properly. To coun-
teract this problem, we introduce the ensemble of CPMs,
which aggregates several estimates obtained from CPMs ex-
ecuted on different subsequences of residuals, obtained from
random sampling. Experiments show that the ensemble of
CPMs improves the change-point estimates when the resid-
uals are not i.i.d., as it is often the case in real-world scenar-
ios.
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1 Introduction

The work concerns the estimation of the change point in a
given data sequence, i.e., the time instant when the data-
generating process shifted from the initial stationary state
into a different one. The change-point localization is typi-
cally performed by means of offline techniques, which can
be eventually triggered by online change-detection mecha-
nisms whenever these perceive a nonstationrity in the data.

The ability to estimate the change-point location in a se-
quence of data is of paramount importance in several ap-
plication domains, such as financial time-series [1], climate
analysis [2] and process control [3]. In fact, once the change
point has been estimated, the causes of the change can be
better investigated and any data-processing application can
be reconfigured on the post-change conditions. For example,
a change may indicate that a fault occurred in a system and
the estimation of the fault-time instant is crucial for the fault
identification and isolation phases [4]. In a classification sce-
nario, a change point may correspond to concept drift in the
data-generating process: availability of the change-time in-
stant allows active classifiers to recognize recurrent concepts
and activate the most appropriate one [5,6].

The change-point formulation [7–9] provides a general
framework for designing statistical tests to locate a change
point within a data sequence. Change-point methods (CPMs)
are statistical tests designed to operate on sequences of inde-
pendent and identically distributed (i.i.d.) random variables.
Remarkably, CPMs do not require any preliminary training
phase as they can be directly applied to the data, as for tradi-
tional statistical hypothesis tests. Unfortunately, CPMs can-
not be directly used to locate changes in time-dependent sig-
nals, where the i.i.d. assumption is not satisfied.

A straightforward solution to cope with signals charac-
terized by time dependency consists in applying the CPMs
to the discrepancy (i.e., the residual) between the acquired
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data and the output of a suitable approximation model [10].
In principle, in many situations, a good model would provide
residuals that are white noise. In practice, however, this is a
rare event because the approximation is typically affected by
model bias. As a result, the residual sequences are often cor-
related and influenced by the dynamic of the original signal.
To the best of our knowledge, countermeasures for applying
CPMs in this practical scenario have never been properly
investigated, though it is well known that correlation in the
residuals impairs the performance of CPMs [11]. In particu-
lar, there are no solutions to improve the CPM performance
on residual sequences.

In this work, we address the specific problem of estimat-
ing a change point within a time-dependent signal, which is
reformulated as the problem of estimating the change point
within a sequence of residuals derived from an approxima-
tion model. To this purpose, we propose an ensemble of
CPMs that, when the residuals are not i.i.d., is able to lo-
cate the change-point better than a single CPM.

Ensemble methods have been successfully applied in
many regression and classification problems [12], as well as
in specific applications [13] (e.g., face, object and optical
character recognition, intrusion detection, medical diagno-
sis) thanks to their ability to improve the performance of a
single model by aggregating different models designed to
solve the same problem [14,12,13]. In the last years, the in-
terest in ensemble methods for time series prediction has ex-
ponentially grown (e.g., [15–17]), corroborating the use of
ensemble methods in time-dependent scenarios. However,
ensemble methods have never been proposed for estimating
the change-time instant, and this paper illustrates a first at-
tempt in this direction.

The proposed ensemble aggregates several individual es-
timates of the change point, each obtained by running a CPM
on a subsequence defined by random sampling. The random
sampling is meant to break down the temporal relationship
in the residuals, which may hinder the change-point local-
ization. Therefore, the proposed solution is general, since it
is possible to build an ensemble of CPMs using any CPM
to compute the individual estimates. Our experiments show
that the ensemble of CPMs provides reliable estimates of
the change point even in situations where a single CPM, ex-
ecuted on the whole residual sequence, would fail.

A preliminary study on this topic was published in [4],
where an ensemble of CPMs was used for fault-diagnosis
purposes in the specific case of changes in Autoregressive
Moving Average (ARMA) models. This paper advances [4]
by addressing the more general issue of estimating a change
point in processes generating time-dependent signals. In ad-
dition, different aggregation mechanisms of the ensemble
have been investigated and a detailed and comprehensive ex-
perimental analysis is presented, which includes also linear
and nonlinear testbeds.

The paper is organized as follows: Section 2 describes
the CPM formulation and the related literature. Section 3
formulates the problem of estimating the change-time in-
stant in sequences of residuals, while the proposed ensem-
ble of CPMs is detailed in Section 4. Experimental results
are presented and discussed in Section 5, while conclusions
are drawn in Section 6.

2 Change-Point Methods

2.1 The Change-Point Formulation

We say that a sequence X

X = {x(t), 1 ≤ t ≤ L},

of random variables contains a change-point T ∗ if x(t) is
distributed as

x(t) ∼

{
P0, if t < T ∗

P1, if t ≥ T ∗
, (1)

where P0 and P1 are two different stationary distributions.
The commonly made assumption [8,9,18] is that both
{x(t), t < T ∗} and {x(t), t ≥ T ∗} contain i.i.d. realizations
of P0 and P1, respectively. Fig. 1 illustrates these settings.

CPMs [9] are statistical hypothesis tests, which analyze
in an offline manner the sequence X . Their null hypothesis
consists in assuming that all data in X have been generated
from the same distribution. When the null hypothesis is re-
jected, X is considered to contain a change point, whose
location is also estimated.

From the practical point of view a CPM operates as fol-
lows: each time instant S ∈ {1, . . . , L} of X is considered
as a candidate change point, and a test statistic T is com-
puted to decide whether S is a change-point or not, given a
predefined level of confidence α.

More in detail, for each candidate change point S, the
sequence X is partitioned into two nonoverlapping sets

AS = {x(t), t = 1, . . . , S}, (2)

BS = {x(t), t = S + 1, . . . , L},

and the test statistic

TS = T (AS ,BS), (3)

is computed to measure the degree of dissimilarity between
AS and BS (test statistics typically used in CPMs are re-
viewed in Section 2.2).

The values of TS are computed for each change-point
candidate, yielding {TS , S = 1, . . . , L}. In what follows,
we denote by TMX the maximum value of the statistic T
over all the change-points candidates in X , i.e.,

TMX = max
S=1,...,L

(TS) . (4)
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Then, the value of TMX is compared with a predefined thresh-
old hL,α, which depends on the statistic T , the cardinality
L of X and 0 < α < 1, which sets the percentage of type I
errors (i.e., false positives) of the CPM. When TMX exceeds
hL,α, the CPM rejects the null hypothesis, and X is claimed
to contain a change point at the location maximizing (4)

MX = argmax
S=1,...,L

(TS) . (5)

Conversely, when TMX < hL,α, there is not enough statisti-
cal evidence to reject the null hypothesis, and X is consid-
ered to be stationary. Therefore, the CPM outcome is{

The estimated change-point is MX if TMX ≥ hL,α
No change-point identified in X if TMX < hL,α

.

(6)

2.2 Test Statistics Used in CPMs

A common approach to locate arbitrary changes in a se-
quence of samples drawn from an unknown distribution con-
sists in analyzing their moments by means of nonparametric
test statistics [18]. Several nonparametric statistics are based
on the rank computation, such as the Mann-Whitney [19]
(to assess changes in the mean), the Mood [20] (to assess
changes in the variance) and the Lepage ones [21] (to assess
both changes affecting the mean and the variance). A CPM
based on the Mann-Whitney statistic was introduced in [8]
together with a CPM for Bernoulli random variables. Shifts
in the mean of a Gaussian random variable can be found by
CPMs based on the two-sample t test statistic [9]. A differ-
ent approach consists in locating change points by compar-
ing the empirical distributions over two sets of data, as in the
CPMs [22] that are based on the Kolmogorov-Smirnov and
the Cramer Von Mises [23] statistics.

The change-point formulation has been also used to mon-
itor online and sequentially data streams, by iterating the
CPM at each new sample arrival [24]. Approximated solu-
tions have been adopted to bound the computational com-
plexity and memory requirement of CPMs applied to data
streams [18,22]. In particular, such a streaming adaptation
is required when the test statistic T is computationally de-
manding (such as test statistics based on the rank computa-
tion). So far we mentioned test statistics for scalars, how-
ever, the change-point formulation can be used to analyze
multivariate data, such as the CPM in [25], which relies on
the on Hotelling T2 statistic.

It is worth noting that the computation of the thresholds
is the major issue when designing CPMs. In fact, even when
the distribution of the test statistics T is known for any par-
tition of X , the distribution of its maximum TMX may be
far from being trivial and, often, only asymptotic or approx-
imated expressions are available. Furthermore, there are no

Fig. 1 The considered time-instants: T∗ is the time instant when the
process abruptly changes, L is the time instant the change is detected
by an external change-detection test. During the interval [0, T∗), data
are generated from P0, while during interval [T∗, L] data are gener-
ated fromP1, which are both stationary and unknown. Goal of change-
point methods is to estimate T∗ given the whole sequence X .

obvious analytical expressions for computing these thresh-
olds when the CPMs are used in an online manner. In fact, in
this case, one should compute the probability that TMX ex-
ceeds hL,α at the L-th sample, conditioned on the fact that
T never exceeded the threshold on the previous L− 1 sam-
ples. Therefore, very often, thresholds {hL,α, L > 0} have
to be computed by numerical simulations, as in [9].

3 The Problem Formulation

Let us extend the traditional framework for CPMs (1) by
considering X as a time-dependent signal. In this scenario,
P0 and P1 in (1) become two stationary processes generat-
ing time-dependent signals (and not anymore random vari-
ables providing i.i.d. realizations). We always assume that
the change corresponds to a shift of P0, which is perma-
nently replaced by P1 and that the descriptions of P0 and
P1 are not provided. Our goal is always estimating T ∗, as-
suming that the change has been safely detected at L > T ∗

by any change-detection method, e.g., [26–28].
The proposed procedure aims at estimating, in an of-

fline manner, the change point T ∗ within a given data se-
quence X that contains data generated both before and after
the change. As commented in Section 1, it is not possible to
directly apply the CPM to X when this is characterized by a
temporal dependence, and the CPM should be rather applied
to the residuals between the data and a suitable approxima-
tion model. We here consider a general class of approxima-
tion models such as the multiple input/single output (MISO)
time-invariant models in the predictive form

x̂(t) = fθ(x(t− 1), . . . , x(t− nx),
u(t), u(t− 1), . . . , u(t− nu)), (7)

where fθ(·) is a linear/nonlinear function parametrized by
vector θ, the system output x(t) and its prediction x̂(t) are
scalar elements, and u(t) ∈ Rm represents the (possible) in-
put of (7). The integers nx ≥ 0 and nu ≥ 0 are parameters
representing the order of the output and input (if present),
respectively. We assume that f is given and that the param-
eter vector θ̂0 has been estimated on an initial training se-
quence containing only data generated from P0. Selection
of the best f as well as the estimate of θ are outside the
scope of the paper; the interested reader can refer to [29].
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The residual at time t is computed as

r(t) = x(t)− fθ̂0(x(t− 1), . . . , x(t− nx),
u(t), u(t− 1), . . . , u(t− nu)), (8)

and the change-point has to be located within the residual
sequence

R = {r(t), t = 1, . . . , L}. (9)

Following the change-point formulation described in Sec-
tion 2, a CPM on the residual sequence is immediately ob-
tained by replacing x(t) with r(t) and X withR.

Unfortunately, in real world applications, residuals inR
are typically far from being i.i.d., even before T ∗, due to
model bias. Moreover, we expect a large degree of depen-
dency among residuals after T ∗. These circumstances vio-
late the hypothesis required by the CPMs and explain why,
more often than in the i.i.d. case, the statistic T does not
properly locate the change-point inR. In the next section we
introduce the ensemble of CPM, which has been designed
to operate on residuals when these are not i.i.d., and which
provides better estimate than a single CPM executed on the
whole residual sequence, as discussed in the experiments.

4 Ensemble of CPMs

We denote by Ed(R) the ensemble of CPMs that aggre-
gates d individual estimates of the change point, namely
{Mi, i = 1, . . . , d}, which are provided by a CPM executed
on different subsequences of R. Peculiarity of the proposed
ensemble is that each subsequence is obtained by random
sampling to reduce the temporal dependency inR. The way
how these individual estimates are computed is described
in Section 4.1, the aggregation is presented in Section 4.2,
while Section 4.3 summarizes the ensemble of CPMs.

4.1 Computing the Individual Estimates Mi

In what follows we describe the way how each individual
estimate {Mi, i = 1, . . . , d} of the ensemble is computed.
At first, a subsequence of n < L elements is extracted from
R by means of the operator Dn(·), which performs a random
sampling over a finite sequence of integers. Let {1, . . . , L}
be the indexes ofR, we denote by

I(i)n = Dn({1, . . . , L}), (10)

a sequence containing indexes randomly extracted – without
repetition – from {1, . . . , L}, in such a way that #I(i)n = n

and the indexes in I(i)n are monotonically increasing. The
sequence I(i)n is used to select the elements of R that are
used to compute the i-th individual estimate, namely,

Ri = {r(t), t ∈ I(i)n }. (11)

Therefore, Ri is a subsequence of R containing n elements
randomly chosen, without repetition, and ordered as they ap-
pear inR.

A CPM with a specific statistic T is executed on Ri,
providing mi that corresponds to the partitioning maximiz-
ing the test statistic in Ri, as in (5). Referring to the above
notation, the i-th individual estimate of the ensemble,Mi, is
given by

Mi = I(i)n [mi], (12)

where I(i)n [mi] indicates the element at the position mi in
I(i)n . Note that (12) maps the estimate of the change point
from the subsequence Ri back to R indexes, thus in the
temporal domain. We denote by TMi the value that the test
statistic T reaches in Mi. Therefore, when TMi

< hn,α,
the CPM executed on Ri is not able to locate the change
point. Equation (12) may provide inaccurate results when
the subsequence Ri does not include the true change point;
it is however possible to mitigate this problem by taking
Mi = (I(i)n [mi] + I(i)n [mi + 1])/2.

4.2 Aggregation

The procedure described in Section 4.1 is repeated d times,
yielding the estimates {Mi, i = 1, . . . , d} computed on ran-
domly defined subsequences. In addition, MR and the cor-
responding value of the statistic TMR are also computed on
the whole sequence R, as in (4)-(6). The ensemble Ed(R)
aggregates {Mi, i = 1, . . . , d} together with MR to obtain
a final estimate M of the change point T ∗. As it often hap-
pens in ensemble methods [13], the aggregation consists in
a weighted averages of the individual estimates

M =

∑d
i=1 ωiMi + ωd+1MR∑d+1

i=1 ωi
. (13)

The most straightforward solution to define the weights
{ωi, i = 1, . . . , d + 1} is to set them as binary values, to
consider only change points for which the test statistics ex-
ceeds the corresponding threshold, i.e.,

ωi =


0, if TMi < hn,α i = 1, . . . , d

1, if TMi
≥ hn,α i = 1, . . . , d

0, if TMR < hL,α i = d+ 1

1, if TMR ≥ hL,α i = d+ 1

. (14)

In (14) all the estimates having test statistic above the
threshold are considered as equally relevant. A different so-
lution consists in assigning larger weights to estimates pro-
vided by partitions yielding larger values of the test statistic,



Ensembles of Change-Point Methods to Estimate the Change Point in Residual Sequences 5

such as

ωai =


0, if TMi < hn,α i = 1, . . . , d
TMi
hn,α

, if TMi ≥ hn,α i = 1, . . . , d

0, if TMR < hL,α i = d+ 1
TMR
hL,α

, if TMR ≥ hL,α i = d+ 1

. (15)

Another viable option consists in selecting, among all
the individual estimates, only the one corresponding to the
maximum value of the test statistic, i.e.,

ωsi =

1, if TMi = max
j=1,...,d+1

(
TMj

)
0, otherwise

. (16)

In the experimental section we evaluate these three ag-
gregation strategies. We point out that when none of the
CPMs executed on the subsequences Ri, i = 1, . . . , d or on
R determines a change point (i.e., when TMi

< hn,α, i =

1, . . . , d and TRi < hL,α), none of the individual estimates
{Mi, i = 1, . . . , d} and MR is defined, and Ed is not able to
locate the change point inR.

4.3 The Algorithm

Algorithm 1 details the proposed ensemble of CPMs. In par-
ticular the loop at lines 2 - 12 performs d-times the random
sampling of R, computes the individual estimates {Mi, i =

1, . . . , d} and the corresponding statistic TMi
. The values

of the test statistic define the aggregation weights {ωi, i =
1, . . . , d}, as in (14) or (15) (in case of weights performing
selection among the individual estimates the lines 10 - 12
and 15 - 17 have to be replaced by (16)). Then, the change-
point estimate from the whole residual sequenceR together
with its weight are computed at lines 14 - 17. Finally, the
d+ 1 estimates are aggregated at line 18 to provide the out-
put M of the ensemble.

5 Experiments

The proposed ensemble of CPM has been evaluated on a
large experimental campaign encompassing both syntheti-
cally generated data (sequences from ARMA processes) and
two testbeds (i.e., the Hairdryer and the Two-Tanks system,
the former representing a linear model, the latter a nonlinear
one).

5.1 Considered Solutions

We consider CPMs based the Lepage test statistic [21] to
assess simultaneously changes in mean and variance of the
residuals. The Lepage test statistic is defined as

L = U2 +M2 (17)

Algorithm 1: Ensemble of CPMs
Input:R = {r(t), t = 1, . . . , L} (the residual sequence), n
(the random sampling parameter), hn,α and hL,α (the
thresholds of the CPM), d (the number of individual estimates
of the ensemble),
Output: M (the estimate of the change-time instant).

1- i = 1
2- while (i ≤ d) do
3- I(i)n = Dn({1, . . . , L}),
4- foreach S ∈ I(i)n do
5- AS = {r(t), t ∈ I(i)n , t ≤ S},
6- BS = {r(t), t ∈ I(i)n , t > S},
7- TS = T (AS ,BS),

end
8- mi = argmax

S∈I(i)
n

(TS),

9- Mi = I(i)n [mi], and TMi
= max
S∈I(i)

n

(TS),

10- if (TMi
≥ hn,α) then

11- ωi = 1 (or ωi =
TMi
hn,α

),

else
12- ωi = 0,

end
13- i = i+ 1;

end
14- Compute MR and TMR as in (4)-(6)
15- if (TMR ≥ hL,α) then
16- ωd+1 = 1 (or ωd+1 =

TMR
hL,α

),

else
17- ωd+1 = 0,

end

18- M =
∑d
i=1

ωiMi+ωd+1MR∑d+1
i=1

ωi
.

being U the Mann-Whitney [19] andM the Mood [20] test
statistics. The statistic U is meant to locate changes in the
mean, whileM in the variance; both statistics are based on
rank computation. Thresholds hL,α for the Lepage statistics
are made available by the CPM package [30] implemented in
R statistical software. In what follows we denote by CPML
the CPM built upon (17).

In particular, we tested the following solutions:

CPML(R) : the CPM executed onR.
CPML,0(R) : the CPM executed on R with hL,α = 0.

This CPM always estimates the change-point at the lo-
cation where the test statistic is maximized, disregarding
whether the test statistic is above or below the threshold.

CPML,0(∂R) : the CPML,0 applied to ∂R = {r(t+ 1)−
r(t), t = 1, . . . , L− 1}. Like in [18], such a preprocess-
ing is meant to reduce the temporal correlation in the
data.

Ed : the ensemble of CPMs where the aggregation weights
{ωi, i = 1, . . . , d+1} are computed as in (14). We con-
sider four cardinalities of the ensemble, d ∈ {10, 25, 50, 100}.

Ea100 : the ensemble of 100 CPMs with aggregation weights
{ωai , i = 1, . . . , d+ 1} computed as in (15).
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Es100 : the ensemble of 100 CPM that selects the individual
estimate yielding the largest statistical evidence of the
change, as in (16).

In all the CPMs we set α = 0.05, and in the ensembles we
set n = L/2.

5.2 Figures of Merit

We evaluate the performance of the ensembles of CPMs by
means of the following figures of merit:
– The False Negative Rate (FNR), which is the percent-

age of experiments where the change-point is not located
(i.e., the test statistic never exceeds the threshold).

– The change-point location accuracy, which is evaluated
by inspecting (by means of boxplots and histograms)
the empirical distribution of the change-point estimates
w.r.t. the true location of the change.

We do not consider the false positive rate since every se-
quence contains a change-point.

5.3 Description of Datasets

5.3.1 Dataset of ARMA Processes

We consider ARMA models as data-generating processes:

x(t) =

p∑
i=1

φix(t− i) +
q∑
i=1

ψiε(t− i) + ε(t), (18)

where θ = [φ1, . . . , φp, ψ1, . . . , ψq] represents the parame-
ter vector, ε(t) ∼ N (0, σ2) denotes the innovation at time t,
p > 0 and q > 0 correspond to the orders of the autoregres-
sive (AR) and moving-average (MA) terms, respectively.

Each data sequence is composed of 550 samples and
contains an abrupt and permanent shift in the parameter vec-
tor θ at time T ∗ = 500: before T ∗ data are generated accord-
ing to θ0, after T ∗ the parameter vector becomes θ1 6= θ0.
We considered three scenarios where L = {530, 540, 550},
representing situations where the change-detection test trig-
gering the CPMs has a different detection latency, thus the
CPM is executed on a different amount of samples generated
after the change.

A dataset of 10000 data sequences was prepared by ran-
domly generating the parameter vectors θ0 and θ1, including
only those yielding stable systems. In each sequence, the
orders (p, q) have been also randomly selected within their
range p ∈ {1, . . . , 4} and q ∈ {0, 1, 2}. The standard devi-
ation of the innovation is σ = 0.1. The parameter vector θ1
is unknown and we estimate θ0 by classical system identifi-
cation techniques [31] on an initial training sequence of 400
samples, assuming that the ranges of p and q were known,
and selecting θ̂0 according to the Akaike information criteria
[32].

5.3.2 Linear/Nonlinear Testbed

We considered the Hairdryer and the Two-Tanks system
testbeds, both available in Mathworks Matlab. The former
application refers to a single input/single output (SISO) sys-
tem described in [31], modeling the relationship between
the power of a heating device (the input) and the air tem-
perature (the output). As described in [31], this system can
be successfully modeled by means of an autoregressive with
exogenous input (ARX) model. The first 700 samples of the
sequence have been used to train the ARX model, and two
types of abrupt changes have been injected in the sequence
at T ∗ = 800: an additive change summing a constant value
δA, and a multiplicative change that scales the sequence of
1 + δM . We set δA = 0.08 corresponding to approximately
2% of the signal amplitude and δM = 0.02. L has been fixed
to 850.

The latter application refers to a SISO system model-
ing two tanks (upper and lower) connected by a pipe. The
system takes as input the voltage at the pump of the upper
tank, while the output is the liquid level in the lower tank.
The system can be modeled by means of a non-linear sys-
tem (e.g., Nonlinear ARX or Hammerstein-Wiener model).
A Nonlinear ARX model (where the nonlinear component is
represented by a Wavelet Network) [31] has been trained on
the first 2200 samples. We consider both additive and mul-
tiplicative changes with parameters δA = 0.03 correspond-
ing to approximately 5% of the amplitude of the signal and
δM = 0.2. Here, the change is injected at time T ∗ = 2300,
whileL = 2350. The parameters δA and δM in both testbeds
have been set such that CPML(R) was not able to locate the
change-point, to outline the effectiveness of the ensemble
where a single CPM would fail.

5.4 Discussion

Experiments on the ARMA dataset show that the ensem-
ble guarantees low FNR (Fig. 2) and good estimates of the
change-point location where CPML(R) fails (Fig. 5). In
particular, the distribution of the ensemble estimates condi-
tioned on the fact that CPML(R) never exceeds the thresh-
old shows that the ensembles Ed may provide better esti-
mates than CPML,0(R) (Fig. 5). Similar results hold in the
comparison with CPML,0(∂R) (Fig. 6). These plots demon-
strate that the advantages provided by the ensemble of CPMs
cannot be simply achieved by arbitrarily lowering the thresh-
olds or detrending the residuals when a single CPM is used.

Fig. 2 (a-c) show that the Eds have lower FNR than
CPML(R) and that, as expected, the FNR decreases with d.
By comparing the FNR values in the three scenarios, we see
that FNR decreases when L increases, since the more sam-
ples after the change, the easier to estimate a change-point
in the sequence.
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Fig. 2 ARMA dataset: the FNR for the three considered scenarios L = {530, 540, 550}.
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Fig. 3 ARMA dataset: the boxplots provide compact views of the empirical distribution of the change-point estimates. The central line in each box
represents the sample median, the bottom and top of each box represents the 25% and 75% quantile, respectively. Each circular marker corresponds
to the sample mean, while the whiskers are meant to identify outliers.

The boxplots in Fig. 3 provide a compact view of the em-
pirical distributions of the estimated change-point for CPML(R),
CPML,0(R) and Ed. These boxplots show that all the con-
sidered CPMs suffer from a structural delay that increases
withL, as the sample mean (represented by a circular marker)
of each boxplot is shifted upwards when L increases. If the
residuals were i.i.d. after the change this would not happen,
since increasing the number of samples consolidates the ev-
idence of the change in the test statistic. In contrast, when

the residuals after the change are not i.i.d., and for instance
follow a trend, it is very likely that a point after T ∗ maxi-
mizes the test statistic (hence shifting forward the change-
point estimate). For this reason, the number of outliers (dis-
played with small gray dots out of the boxplot whiskers) in
the right tail of each distribution also increases with L, and
this is particularly evident when L = 550.

Fig. 3 shows also that, in all the considered scenarios,
CPML,0(R) (light gray boxes) is characterized by the largest
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interquantile range (the extremes of the boxplot are the 25th
and 75th percentiles) and a large number of outliers. In par-
ticular, because of these outliers, the sample mean falls be-
low the 25% quantile when L = 530. Furthermore, the dis-
persion of the estimates of Ed (orange boxes) increases with
d, and a similar consideration holds for the number of out-
liers.

It is important to analyze the accuracy of Ed conditioned
to the fact that CPML(R) is able to locate the change point
or not. Fig 4 compares CPML(R) with Ea100 only on se-
quences where CPML(R) was successful when L = 530.
The two histograms are rather similar though the ensemble
has, as expected, a less peaked and smoother distribution.
The yellow boxplots in Fig. 3 have been computed from
these subsequences, and confirm that Ed provide estimates
that are located very close to that of CPML(R) and char-
acterized by a similar dispersion. Therefore, the aggrega-
tion phase can successfully compensate possible inaccurate
individual estimates. In contrast, Fig. 5 compares Ed with
CPML,0(R) on those sequences where CPML(R) was not
successful. Here, both distributions of CPML,0(R) and Ed
have an heavy left tail, which is coherent with the large num-
ber of outliers in the left part of the boxplots in Fig. 3. These
tails indicate that often, in these sequences, the point max-
imizing the test statistic was located far before T ∗. This is
probably due to estimation errors of θ̂0, which induce model
bias and make {r(t), t < T ∗} far from being white noise.
However, in these situations, estimates from Ea100 are better
clustered around T ∗, while CPML,0(R) is often
stacked at the extremes of R. This means that on residual
sequences, it is often better to use an ensemble of CPMs
than lowering the thresholds to ease the change-point local-
ization.

As a further comparison, we contrasted Ea100 with
CPML,0(∂R) in Fig. 6, showing that the latter is also af-
fected by the same problems of CPML,0(R), and that the
improvement provided by the ensemble cannot be achieved
by detrending the residuals. Fig. 7 compares the distribu-
tion of E100, Ea100 and Es100 in the whole dataset, and shows
that there is no substantial difference when weights (14)
and (15) are considered. However, when the aggregation is
performed by selection as in (16), the distribution tends to
be more peaked at T ∗, while suffering from heavy tails as
CPML,0(R) does.

Interestingly, the experimental results on the testbeds de-
scribed in Section 5.3.2 are in line with those on the ARMA
dataset. While the outputs of CPML(R) and CPML,0(R)
are deterministic, i.e., given an specific input sequence they
always provide the same output, the output of any ensemble
Ed is stochastic, because of the random sampling. Therefore,
in Fig 8 - 11 we plot the empirical distribution of E100 and
Ea100 estimates, computed over 500 iterations on the same
sequence. In the figure captions we report the percentage

of times when the change point was located within these se-
quences (over the 500 runs), as well as the estimate provided
by CPML,0(R) (CPML(R) was never able to locate the
change point here). From these experiments it emerges that
the ensemble can be successfully used to estimate change
points in more complex and realistic scenarios, though in
Fig. 10, CPML,0(R) provides a better estimate of the change
point.
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Fig. 4 ARMA dataset: comparison of CPML(R) and E100 on se-
quences where CPML(R) was successful.
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Fig. 5 ARMA dataset: comparison of CPML,0(R) and E100 on se-
quences where CPML(R) was not successful (while E100 was suc-
cessful).

6 Conclusions

We presented an ensemble of CPMs that, combined with a
suitable approximation model, represents a viable option for
estimating changes in data-generating processes, thus ex-
tending the applicability of CPM beyond sequences of i.i.d.
random samples. In conclusion, we remark that using the en-
semble of CPMs is not beneficial when analyzing sequences
of i.i.d. samples. In fact, on i.i.d. sequences, the more data
are used, the better the estimate of the change point is, there-
fore, it is not convenient to perform random sampling. Fur-
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Fig. 6 ARMA dataset: comparison of CPML,0(∂R) and E100 on se-
quences where CPML(R) was not successful (while E100 was suc-
cessful).

400 420 440 460 480 500 520
0

0.05

0.1

0.15

Empirical distribution of ensemble estimates

t

F
re

qu
en

cy

 

 

E100
Ea
100Es
100

Fig. 7 ARMA dataset: performance of the ensemble when different
aggregation strategies are considered.
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Fig. 8 Hairdryer dataset affected by additive change: distribution of
ensemble estimates over 500 runs. The ensemble was able to locate the
change point in about 90.2% of runs, while CPML,0(R) estimated
the change point at sample 806.

thermore, CPMs guarantee a controlled false positive rate on
i.i.d. sequences, while the ensembles of CPMs do not.

However, when the i.i.d. assumption is not satisfied (as
in the case of residuals from approximation models), neither
individual CPMs nor the ensemble can control the false pos-
itives rate, while the ensemble may provide better estimates,
as our experiments show. In light of these considerations,
we believe that the ensemble of CPMs is promising and de-
serves further investigation.
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Fig. 9 Hairdryer dataset affected by multiplicative change: distribu-
tion of ensemble estimates over 500 runs. The ensemble was able to
locate the change point in all the runs, while CPML,0(R) estimated
the change point at sample 806.

2220 2240 2260 2280 2300 2320 2340
0

0.02

0.04

0.06

0.08

0.1

0.12

Empirical distributions of the ensemble estimates

t

F
re

qu
en

cy

 

 

E100
Ea
100

Fig. 10 Two tank dataset affected by an additive change: distribution
of ensemble estimates over 500 runs. The ensemble was able to locate
the change point in about 98.5% of runs, while CPML,0(R) esti-
mated the change point at sample 2307.
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Fig. 11 Two tank dataset affected by a multiplicative change: distribu-
tion of ensemble estimates over 500 runs. The ensemble was able to
locate the change point in all the runs, while CPML,0(R) estimated
the change point at sample 2323.

Ongoing works concern the study of other techniques
than random sampling for computing the individual esti-
mates, the aggregation of different test statistics in the en-
semble, as well as using the ensemble of CPMs to locate
change points in features extracted from data streams, as in
[33]. In fact, features extracted from time-dependent signals
are often not i.i.d., and it can be beneficial to adopt the en-
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semble of CPMs to locate change points within feature se-
quences.
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